Empirical variogram for achieving the best valid variogram
نویسندگان
چکیده
منابع مشابه
Variogram estimation in the presence of trend.
Estimation of covariance function parameters of the error process in the presence of an unknown smooth trend is an important problem because solving it allows one to estimate the trend nonparametrically using a smoother corrected for dependence in the errors. Our work is motivated by spatial statistics but is applicable to other contexts where the dimension of the index set can exceed one. We o...
متن کاملWeighted Classical Variogram Estimation for Data With Clustering
The classical variogram estimate is convenient but can be unacceptably variable. Improved estimators are possible, especially when the locations of the available data are highly clustered. Using a simple theoretical example, we demonstrate that weighting can dramatically increase the efficiency of classical variogram estimates from clustered data. We give expressions for the weights that lead t...
متن کاملImproved Variogram Models for More Realistic Estimation and Simulation
Geostatistical models often require a variogram or covariance model for kriging and krigingbased simulation. Next to the initial decision of stationarity, the choice of an appropriate variogram model is the most important decision in a geostatistical study. Common practice consists of fitting experimental variograms with a nested combination of proven models such as the spherical, exponential, ...
متن کاملVariogram Model Selection via Nonparametric Derivative Estimation
Before optimal linear prediction can be performed on spatial data sets, the variogram is usually estimated at various lags and a parametric model is fitted to those estimates. Apart from possible a priori knowledge about the process and the user’s subjectivity, there is no standard methodology for choosing among valid variogram models like the spherical or the exponential ones. This paper discu...
متن کاملVariogram-based proper scoring rules for probabilistic forecasts
Proper scoring rules provide a theoretically principled framework for the quantitative assessment of the predictive performance of probabilistic forecasts. While a wide selection of such scoring rules for univariate quantities exists, there are only few scoring rules for multivariate quantities, and many of them require that forecasts are given in the form of a probability density function. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2020
ISSN: 2383-4757
DOI: 10.29220/csam.2020.27.5.547